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1., Let us conaider the quasi-linear equation
w +uu, = F (u) (1.1)

We shall investigate its self-similar solutions u(e)sy(x-wt) which are
continuous or have discontinuitiles of first order, are single-valued and
determinate for all ¢

As 18 well-known (cf., for example, [1]), in the case of a discontinuity
of first order, the limiting values u, and yu_ on either side of the dis-
continuity must satisfy conditions of the Hugonlot type #(u_+u, )=w and a
stability condition u,<u..

On the portions of the functions u(g), which are smooth, we have from (1.1)

d d —
(a— ) 5 = F (@), %:fﬁm;" (1.2)

We shall assume that ¥(y) is a smooth function and that on any finite in-
terval of variation of u, the function F(u) does not have more than a finite
number of changes of sign. The set of integral curves of (1.2) consists of
curves in the (£,u)-plane on which £ 1s a single-valued function of u, and
all the curves of this set are obtained from some kind of a translation par-
allel to the g-axis.

If F(u)#O0 for u~w, then the sign of d&/du in (1.2) changes for u=w and,
hence, & single~-valued smooth self-similar solution u{e) which is determinate
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for all & does not exist.

However for certain configurations of the integral curves of (1.2}, for
example, for those shown in Fig.l, a sclution u(f) having a discontinuity
of first order can exist. But in this case there are also no solutions which

have less than two discontinuities of first or-

ur der. As 1s easily seen, such solutions exist if
~ u(t) and only if the derivative du/d£>0 on the in-
o “tza:::::;j’“ tegral curves of {1.2) in some neighborhocod of
U=w the line u=w, i, e, if #(u) has a change of sign
e — at ysw from minus to plus (type{—+)). Thus the
- following theorem holds.
5 Theorem 1. 1. Let the smooth funection
F{u) in Equation {1.1) have not more than & fi«
Fig. 1 nite interval of variation of u. Let u,(%=0,1,

2,++.) be the changes of sign of M(u) of the type (—+). Then self-similar
solutions u(g)sy(x~wt) are single-valued, determinate for all &, and have not
less than two discontinuities of first order and exist only for w,=u,. There
is a non~denumerable set of solutions dindicated for each of these w,, even
if no distinction is made between solutions odtained from one another by
translations along 2.

In Pig. 2 is shown & "simple periodic” solution which has one discontinuity
in each period. If translations along the f£-axis are disregarded, it is eas-
ily seen that the set of simple periodic solutions is a one-parameter family
in which, for example, the height of the jump can
be taken as the parameter.

Each solutlon u(x-uct) can be considered as a

_qufuk solution (a generalized solutlon in the presence
- of discontinuities) of a Cauchy problem for Eque-
3 tion (1.1) with the initial conditions
ul— =u ().
Pig.2 As is well-known (ef., for example, [2]) if a fi~

nite rectangle {Ostsl,"xpsxsxo} of the xt-plane is
considered, these solutions in the norm I, with respect to x then depend
continuously on the initial data. It is also well-known (cf. loc. cit.), that
in the same norm they differ little from the solutions of the Cauchy problem
for the equation

U futy =F (U) -ty (1.3)

with the same 1nitial data if u is small.

Let us consider a self-similar solution u(g)mu(rust). Let us assume that
Equation (1.1) describes a real phenomenon with small dissipation uu,., 1. e.
let u(z) be a"truly observable" wave. In fact, since dissipation does exist,
the truly observable wave u{Z) is then nothing other than the solution

Uy, (&) = iy (z — uyf)
of Equation (1.3) with small u. Hence, the following definition is implied.
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Definition 1. 1. We shall call a self-similar solution u(eg)=
u(xrot) self-similar stable in the interval e<t<d, 1if for any ¢>0, &0 there
can be found a up(e,8,0,d) such that for any u<u, Equation (1.3) has a self-
similar solution u, (§) =i, {r -- uy), for which u(r) satisfies the in-
equality |u (§) —u, (§)|<e for <& (¢, d) exterlor to &-neighborhoods
of points of discontinuity.

The following theorem shows that the requirement of self-similar stability
substantially restricts the class of possible self-similar solutions.

Theorem 1. 2. In the interval uo-2, uo+¢) let F(u) have only one
change of sign of the type (—) at the point umu, and let F(up+&)=F{uo—x)
(#<a).

Then if a solution u(Z)mu(x—yst), whose values belong to the interval
{uo—G, uo+a}, for & (¢, d) and which has just one discontinuity in the
open interval o<f<d, is self-similar stable, it coincides with a simple per-
lodic solution for Ee= (e, d)

Proof. First of all let us clarify the character of the solutions
u, (E)- for the assumptions which have been made regarding F(u). For

ty, &) = u, (x — uyt)
Equation (1.3) gives the following ordinary differential equation:

dup' dzup_
(, —uo) gg =F (1) + 1 gzt (1.4)

The dynamic system of second order whilch corresponds to (1.4) has the form

dX dY

=Y, pg=XY—jX) (1.5)
Here . d(u, —ug)

A= up‘ _— uo, Y = T

J(X)=F (), J(&)=—F(—2) (z<a)

The function f(z) has a change of sign (—+) at g=0, The system (1.5) has
the point (0,0) as the center and its phase diagram 1s the strip —a<X<a 1is
presented in Fig. 3, where XL is a curve whose equation is ~r=x's(r).

Consequently, all solutions of (1.4) with values from the interval (uo-—a,
Uo+2) are perilodic. For brevity, let us designate the interval of variation
of £ for which the phase point passes through some arc of the cycle as the
"time of passage" of this arc. The time of passage of the entire cycle 1s the
period T which corresponds to uP(EL Over the period 0<£<T there 18 one in-
terval of increase, the time of passage of that part of the cycle for which
>0, and one interval of decrease, the time of passage of that part of the
cycle for which ¥<O.

Let us now assume the contrary statement of the theorem. Let the solution
u(2) which has just one dis¢ontinuity in (s,d) be self-similar stable in (0,d)
but not coincident in this interval with any simple periodic solution. Then,
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in (o, @) there exists a point of discontinuity £, with the following prop-
erties: if (z,, e,) and (r,, 2,) are intervals of smoothness of the functicn
u(z), which are adjacent from the left and from the right to the point £,
(Fig.4) and which belong wholly to (o, 4) and if (u,, u"o) 8nd (ue*, us) are
the corresponding intervals of variation of u(?), then either ugy"<u; or u<
<uy* (Fig.4) (the notation u,~=u(g,—0) and uy*=u(£,+0) has been introduced
here).

Y

Fig.3 Fig.4

We shall examine, for example, the case us“<u, and show that the assumption
of self-similar stability of u(z) leads to the absurd.

Let u (f) be a solution which approximates u(g) to within ¢ outside of
the $-neighborhoods of the discontinuities. Since the interval of variation
of u(e) for Ec(c,d) 18 not less than (u,, u,), the interval 2q of the va-
riation of «u, (§) for E & (¢c,d) 38 then not less than (u, Wo+e, uy—Né—<),
where M= max | y'(2)| in the interval of smoothness of u(%)

In order that u“(g) approximate u(g) to within ¢ exterior to the in-
terval (g,—b, g,+6), 1t 18 necessary, taking into consideration that e<NS,
that the values of uu(gx which exceed y,~ be concentrated in this interval,
1. e. that the time of passage of the phase point along the arc A5 of the cy-
cle which lies to the right of the vertical line Iwi, -y (Pig.3) must be
less than 2§.

On the other hand, let £, be a point of (e,, #,) at which u(g,)=us". Then
to approximate y(z) in the interval e <ecg,—4 it is necessary that the time
of passage along the arc 4,5, which lies to the right of the straight line
XY=y~ —ug+e be not less than £,—£,—5. Since the arc A;5, 1s contained wholly
within the arc Ap, this leads to a contradictlion for sufficiently small &.
The theorem 1s proved.

2. 1. Let us consider the system of equations which describe the flow of
water in a sloping channel [3 and 4]

u -+ uny + gy= = @ (u, y), Yo+ [uyle=0 (2.1)
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Y y .
O(u,y)=y¢ un6~7yum[1+—2y] signu (2.2)
Here u{x, t) 1s the velocity of the fluid particles, y(x, t) is the depth
of the flow, 8 1s the angle of inclination of the channel, £ is its width,
¢ is the acceleration due to gravity, A>0 and m, n>1 are constants.
The system (2.1) can be written in the divergent form

(wy) + (u’y + 8 i) =yD0(u,y), Y+ (uy)x=0 (2.3)
2 /x

If the analogy to the system which describes the 1sotropic flow of a gas
is drawn, then {2.3) is written in Eulerian coordinates [4] where the depth
¥ plays the role of the gas density p. In analogy with gas dynamics let us
now pass to Lagrangian coordinates [1]. In place of the independent variables
x, t let us introduce new varlables ¢, t' defined as

g =q(z,t), t =t dg= —ydz +uydt (2.4)
The existence of the function ¢(x, t) follows from the second equation of
(2.3).
With this substitution
o _ 0 0 b _,8
"o Wy oz — Y5

Simultaneously with the substitution of the independent variables in (2.3)
let us further introduce
- -2
v =y, p(v) =gV
and in the final writing let us denote t' and ¢ again by ¢ and x, arriving
at the following system
uy [p (v)]x =F (u9 U), Ut ~— Ux =0 (2‘5)
Here (*) .
n
F(u,v)=®(u,y)=a—rm (v—‘r—l—) signu  (a,A>0; m,n>1) (2.6)
The system (2.5), which has a divergent form, may be regarded as a system
of the "laws of conservation” which govern not only smooth flows, but also
discontinucus flows (1. e., flows with "jumps™), if it 1s shown that the

conditions on the jumps of the Hugonlot type which are implied in (2.5) co-
incide with physically realized conditions.
The conditions of Hugoniot type for (2.5), as is well-known [1], are

p(v) —pw) =0 —u) —(u—u) =0, —2) (2.7)

-

*) A simple reference to the work in gas dynamics would be sufficient to
transform the system (2.3) to Tagrangian coordinates; it 1s reproduced here
since the term #{u, y) 1s absent in the gas dynamic equation.
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Here w is the Lagrangian velocity of diffusion of a discontinuity.
On the other hand, the real conditions on both sides of the jump in the
flow have the form [3]

MV, —V) =p_—p,, y V. =yV, =M (2.8)

Here ¥ 18 the mass flow across the discontinuity, and V_ and V, are the
velocities of the discontinuity relative to the particles on elther side of
it, 1. e.

V_=U—u, V, = U — u, (U 1s the velocity of discontinuity)

- +

The Adentity of conditions (2.7) and {2.8) must be shown.

Taking the meaning of the Lagrangian velocity w into account, we can
affirm that ws¥. Therefore, the first conditions of (2.7) and (2.8) are imme-
diately coincident, and the second conditlon of (2.8) takes the form

U—u_ =0, U—u, =v0

In addition, as i1s also the case in gas dynamics, we have the energy
dissipation condition v,>v_, for w>0 and v,<v_ for w<0. We further note for
later use that there follows from (2.7)

ROAZpl) (2.9)

Hence, considering the graph of p(v) and taking the geometrical inter-
pretation of w® from (2.9) as a secant into account, we have the following:
if that value of vy for which p'(ve )=—w? 18 denoted by v, {(w), then the value
of vy always lies strictly between v, and v_.

2. Let us consider the self-similar solution of (2.5)

u (€ =u(z — o), v(E) =v(z — i) (2.10)

For such solutions (2.5) acduires the form

[p (v)—}—mZ]Z—g = F*(v), u=—ov+ C (2.11)

Here
F* () =F (— av +C, v) (2.12)

Let us consider the equation; for which w (we shall call them admissible
values) the existence of self-similar solutions of {2.5) having even one
discontinuity {we shall call such solutions simply self-similar) is possible.

Theorem 2. 1, 1°, All values of w<0 are inadmissible.

2°, The set of admissible w>0 coincides with part of the seml-axis w0
for which the function

1 1 2 n
— —_— o — 2 —— ]
f@=mo—n(4)" (g0 * +) " (2.13)
1s negative.
In particular:

(a) For 2n/m<l admissible w exist and are bounded from above wsw,
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(m, n, £, aN).

(b) For 2n/m:1 the existence or nonexistence of admissible w depends on
the relations among the parameters, but in any case they are bounded from a-

bove Just as in (a).
3. Por wide channels (fws) the function f{w) takes the form

1 n 1 n 2
/g N T — e b e
f((l)) — mm—n{\%)mg 3m 3 (1)3m 3 (214)
(a) Por 2n/m<1 the set of admissible w satisfies the inequality
1 n 1 3
Floa e o g _
0<(.\)<(:}3:n,/ml‘("‘;:->mg am 3}‘: (2.1.:))

(a==1—2n/m)
(v} For 2n/m>1 the admissible values of w satisfy the inequality wy<w,

where wy is the same as in (a).
(c) For 2n/mwl (the Chezy case (Reference 3)) all values of w are admis-

sible 1f
L
2

2—(5)"e * <0 (2.16)

and values of w wlth opposite sign in the inequality are not at all admissible.

Proof, The question of the exlstence of self-similar solutlons with
specified values of w which have even one discontinuity reduces to the fol-
lowing.

For an arbitrarily specified w, let us find vo(w) such that p'(vgjtu®=0.,
Such & v, (w)>0 can always be found and it 1s unique, namely 7, (®) = g lsg™h,
If now (=Cp can be determined so that the properties of -F*{v), defined
by (2.12), guarantee the existence of integral curves v=v(ez) of equation (2,

11) which monotonously increase for w<O (Flg.5) and monotonically decrease
for w>O(Fig.6) 1in a horizontal strip of the {zv)-plane, which includes the
straight line v-v,(wS‘inside of 1t, then a self-similar solution with
prescribed w exists (*).In the converse case a self-similar solution does not

exist.

Fig.5 Fig.6

In fact, as has been shown above, vy {w) always lies between v, and v_ 80
that the range of values of the self=-similar solutions v(z) must include v, (w).

Further, for w<O the dissipation condition has the form v,<v_ and a trend
of the curves similar to that shown in Pig.5 is necessary {and sufficient) to
be able to construct self-similar solutions with discontinulties.

#) In addition, a nondenumerable set of self-similar solutions also exists.
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For w0 the dissipation condition is reversed and an analogous statement
holds for Fig.6.

The dehavior of the integral curves in the neighborhood of the iztllght
line v=v, is, however, determined by the behavior of the funotion r#(v) at
vwvg (w). Namely, since p'{v)+w® always has the change of sign (— +)at v,,
then for the trend of the curves deploted in Fig.5 1t is necessary and suffi-
clent that F#*(v) have a change of sign (- +) at the point v, and for the
trend of the curves in Fig.6 it is necessary and sufficient for F*(v) to
have a change in sign (+ — ) at the point v, ,

Thus, let w be specified. For 1t ¥ (0) = g /7 » s can be found, We shall
show that a O=Cs {(w) can always be found, and moreover it is unique, such that
§*(v%;r(—wv+cb, v) vanishes at veyy, Finding such a ¢ reduces to solving the

quation

-n

m . 2
for C. (=0 €)F sign (— woy + €) = % (z‘°+ T) (2.17)

From a graph of the left-hand side as a function of ¢ it it 1is easily
perceived that such &8 Om(,{w) can be found and is, moreover, unique,
Let us denote the function F(—wv+Co,») by F_%(y). It has the real root
ve (w) {and there can still be others). @
t w<O. The graph of the function

2 -n
FJ00=a~wo—mw+%f%v+—r)ﬁyﬂ~mv+0@ (2.18)
18 given in Fig.7. From it there 18 seen that F.,* (v) has a unique root which,
consequently, 1s also vy, But a change of sign (+ —)occurs at this root which

excludes the existence of & seif-similar solution. Thus, part 1° of the the-
orem has been proved.
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Pig.7 Fig.8

Let w>0. The graph of the function F_* (») for w0 is given in Pig.8; at
least one positive root, namely vy, always exists.

The question consists of whether the necessary change of sign (+ ~)oe-
curs at vy or, in other words, whi;h'o(t) the two roots of the function

v
is vy (if both of them are positive“,’ otherwise the question 1s resoclved).
The question 1s resolved by investigating the sign of the derivative F_* ().

Taking into consideration the expressions for FMu, 9)5‘1: Sw) and the iden-
tity (2.1'?? and also the fact that all of the roots of F,*(v) for w0, as
can be seen from Fig.8, occur with v<oo/w, 1. e. with — wv+(s>0, 80 that we
can take sign (— wv+Cs) =1 for the differentiation, and have

2 n
Fo¥ (v0) =& (— wog+ €)™ (w0 + 1) f(@) 2.19)

The change of sign (+ —) necessary for the existence of self-similar
solutions 1s guaranteed by the negativeness of F#,* (vy), 1. e. by the neg-
ativeness of f(w). We note that the case ofF,"(vo) =(0is inadmissible since
in this case there 1s no change of sign of F *(vpat the point vy (Fig.8).
This, by the way, shows that w=O is inadmissibdle.

To prove all of the points of parts 2° and 3° only an elementary inves-
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tigation of the funsction f{w) on the semi-axis w>0 remains to be carriled out,

In the case (a) of point 2Y 1t is emsily seen that the second term in f(uw)
is dominant for small w so that f/(w)<0 and the first term is dominant for
large w 8o that f{w)=+» as wetw,

is is valid for the case (a) of point 2, but here it is further guar=

anteed that f(w) has only one root and that it is easy to write an expression
for it in terms of the parameters.

In the case (b) of point 1Y the function f(w) is positive for both small
and large w but, depending on the parameters, it can be negative for certain

ml

In the case (b) of point 2¢ the function f(w) 1s positive for small w and
negative for large w; moreover, a unique change of sign takes place at ws
which 1is indicated in the formulation of the theorem.

Finally, in the case {(c¢) of point 2 we have

n 1
— e T am 3
f(m)~w[m n ( x ) g | (2.20)
Hence, this point 1s clearly confirmed. With this the proof of the theorem
18 completed.
Note 2. 1, The admissibility of certain w>0 means that the curve
of F,"(v) in Fig.B has two positive roots, of which vo (w) 1s the smallest.
Let ther be another root v, (w). At vep, the function F _* (v) has the change
of sign (- +); therefore, the integral curves have the“form shown in PFig.9.
Note 2,2, If the quantity v, (w) 1s taken as v, 1in the Hugoniot
condition (2.9), then

v[uin (0‘)) = [ymax (m)]-l

will play the role corresponding to v_ where y .. (w) is the maximum helight
of the wave gosaible for the given w.
From Pig.

it 1s seen that v, (w)<w *(o(w). Taking into consideration that
in the conditione (2,9) an increase of v,
leads to a decrease of v_, and denoting by
¢ (@) the quantity obtained from l(a%})) ?s
v_, we have p . (o) > (0) 1f w0 (Pw) 18
taken for v¢."“"( )= (©)

In the case (a) of points 2° and 3° ad-
missidble w are bounded from above by a
quantity we(m, n, £, a/A). §For point 3°
there 18 no dependence on Z). For the mag-
nitude of inf v,,;, (®) 4n the interval O<u<ws,
which 1s assoclated with the maximum helght
of a wave generally possible for the given
Fig.o parameters m, n, £, a/\, we have the es~
* timate

min @ (®) < Yrnin (©)

inf
Cagu, 0<w<w,
The quantity standing here on the left can be easily written out expllcitly
as a function of the parameters m, n, L,la/K with the help of the equality
(2.17) for Co, the expression y, (0) = g~/ @ /s and the Hugoniot conditions (2.

"In the cese (b) of point 2 and , (b) and (c) of point 3°, where the ad-
missidble w can be arbitrarily large, we have

Vnin (©) < 2o (0)— 0 for W — 4 o0

8o that theoretically waves of arbitrarily large helght are possible (clearly,
for sufficiently large wave heights, the hydraulic equations (2.5) themselves
become inapplicable.

Note 2, 3. Fromtheorem (2.1) it 1s seen that the magnitude of the
ratio m/h has an essentlal qualitative influence on the properties of the
self-similar solutions, of which the very commonly used Chezy formula is an
exceptional boundary case. Taking into consideratlon the empirical character
of the quantities m and n, a.questlion about the possibility of determining
m/n to some degree from a qualitative examination of the behavior of a self-
similar solution arises.
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3. Analogously to the case of & single equation, the system (2.5) can be
considered with a dissipation term

wp  [p ()] = Pty + F(w,0), 2, —u =0 (3.1)

and self-similar solutions of this system % (¥ — @), 2, (z — @!)can be exam-
ined. In addition, the concept of the self-similar stabillity of the sclutions
can be introduced.

For u, (§), », (§) the system (3.1)dacquires the form
v v .
(P )+t g =Fro)—apgn, w@=—w@+C (3.2)
The dynamic system corresponding to the first equation of {(3.1) 18
dX daY ]
Z=Y egp={()—-eX)Y (3.3)

Graphs of the functions f(r) and ¢(r) are presented in Pig.1o0.

The functions /{r) and ¢{x) in equation (3.3) are functions of a par-
ameter w, where w has been chosen to be admissible in the sense of Theorem
{2.1). The direction field for the system (3.3) is shown in Fig.1l.

'™
J
[ Zal

J =<k A (X)Y=0

Fig.10 Fig.11

The point (0, O) is the focus of center. The investigatlon of the phase
diagram of (3.3) is a very interesting problem. If it turned out that the
point {0, 0) is enclosed by a 1limit cycle, whose left~hand point does not ap-
proach infinitessimally close to the straight line I» — Uy for all possible

admissible w, then this proclaims the existence of a maximum height of waves
developed from an undisturbed flow even in the case for which the admissible
@ can be arbitrarily large (cf. Note 22),

Let us approximate the functions F(r) and ¢{X) in equation (3.3) by the
linear functions f(X)s=t(x) and ¢(x)=kr in a small interval [~ n, n].

Then, in place of {3.3), we shall have the approximation

dX day
?g-» =Y, O 75« = 1X — kXY {3.4)
for the strip — hsrs<mn of the phase plane.

The point (O, O) will be the center for the system (3.4). The same rea-
soning as employed in Theorem 1,2 leads to the conclusion that only simple
periodic solutions really exist (i. e, that there 1s self-similar stability).

In view of the fact that (3.4) approximates (3.3) only for small », this
conclusion, however, should for the present be considered valid only for waves
of not large amplitude.

Its validity for waves of ardbitrary amplitude 1s not excluded but is
liable to further clarification.
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