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1. I& ue consider the quasi-linear equation 

ut + uu, = F (u) (i.lj 

We shall lnvcstlgate lte self-similar eolutions u(t)-~(~dt) which are 

continuous or have discontinuities of first order, are single-valued and 

determinate for all e . 
As Is well-known (cf., for example, cl]), In the caee of a discontinuity 

of first order, the limiting values u+ and U_ on either aide of the die- 
continuity must satisfy conditions of the Hugonlot type &(u_tu+)-~ and a 

&ablllty condition u+<u_ . 
On the portiona of the functions u(q), which are smooth, we have from (1.1) 

(1.2) 

We shall ass- that F(u) is a smooth function and that on any finite in- 

terval of variation of u, the function F(u) doee not have more than a finite 

number of changes of sign. The aet of Integral curves of (1.2) consists of 

curve6 in the (s,u)-plane on which 5 is a single-valued function of u, and 

all the curves of this set are obtained from aoine kind of a tranBlatiOn par- 

allel to the C-axis. 
If F(u)#O for u-w, then the elgn of dt/du in (1.2) changes for uq and, 

henae , a single-valued smooth aelf-similar solution u(c) which la determinate 
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for all f does not exist. 
However for certain configuratione of the integral curvca of (X.21, for 

example, for those ahown In Flg.1, a aolutlon u(t) having a dlecontlnulty 

of first order can exlat. But ln thls case there are also no aolutlona whlah 
have leas than two diacontinuities oi first or- 

u der. ha la easily seen, such aolutlona exist If 

UC41 and only if the derivative dddp0 on the in- 
tegral aurven or (1.2) in some neighborhood ol -_-- - ----- 

~ 

UfW the line u’u), 1. t. if F(u) has a change of sign 

at U’IQI Born minus to plus (type(-+)). Thus the 

4 
following theorem holda. 

Theorem 1.1. Lat the smooth function 

F(u) ln Equation (1.1) have not more than a tl- 
Fig. 1 nlte interval of variation a? U. bt uI 

a non-denumra,ble set ot solution8 &ndlcated for each of there ~)a, even 

If no distinction la made between solutions obtained from one another by 

tranalatlona along 5. 

In Fig. 2 la shown a ‘abnpla periodic” solution which ha8 one discontinuity 

In each period. If translations along the c-axle are disregarded, it la eaa- 

lly seen that the set of almple periodic aolutlona is a one-parameter fam%ly 

In which, ior example, the height of’ the Jump can 

be taken as the parameter. 

Eaah aolutlon ~(-6) CM be conaldered as a 

solution (a generalized ablution In the presence 

of dlacontlnultlea) of a Cauchy problem for Equa- 

tlon (l.S) with the Inltlal condltlona 

l-6 it=0 = lL (z). 
Fig.2 As la well-known (cr., Tar example, 123) If a ii- 

nlte rectangle {OstsZ’,~~~~sx~] of the rt-plane Is 
considered, these ao:.utlona In the norm L, with respect to x then depend 

continuously on the lnltlal data. It la also well-known (cf. lot. alt.), that 
in the smme norm they differ little from the aolutlona or the Cauchy problem 

for the equation 

Ut + U% = p (u) f p t&xx P -31 

with the same Initial data If u la amall. 

Let us consider a self-almllar solution u(~)Y(x-u,,~). Let ua assume that 

Equation (1.1) describes a real phenomenon with small dlsalpatlon uri.., I. e. 
let ~(5) be a”truly observable” wave. In fact, since dissipation doea exist, 
the truly observable wave u(e) la then nothing other than the solution 

uy (E) = up (5 - %O 
of Equation (1.3) with small ~1. Hence, the following definition la implied. 
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Definition 1.1. We shall call a self-similar solution u(s)- 
u(mt) self-almilar atable In the Interval cc5<d, if for any e>O, 6~0 there 

can be found a IA~(c,~,c,~) euch that for any vck Equation (1.3) has a self- 

similar solution UiL (f) = II.,, (.z - - l/,1), for which u(q) satisfies the in- 
equality / u (k) - uI,, (5) ] < E for 2 FZ (c, d) exterior to b-neighborhoods 
of points of discontinuity. 

The following theorem shows that the requirement of self-almilar stability 

substantially restricts the claes of possible self-slmllar solutions. 

Theorem 1. 2. In the Interval uo-a, u,, +a) let F(u) have only one 
change of sign of the type (-+) at the point u-u0 and let F(uo +r)I-p’(k-s) 

(fit). 
Then If a solution u(<)-u(x-~,t), whose values belong to the interval 

(~0-0, uo+o), for E E (c, d) and which hae just one discontinuity in the 

open Interval o<tcd, is self-similar stable, It coincides with a Simple per- 

iodic solution for I;E(C, d> * 
P r 0 0 f. Firat of all let us clarify the character of the aolutiona 

au (5). for the assumptions which have been made regarding F(u). For 

LL.& (5) = up (z - [(“I) 

Equation (1.3) givea the r0ii0bmg ordinary dirferential equation: 

d”P daup 
(u,-q~=wJ+P @- (1.4) 

The dynamic system of second order which corresponds to (1.4) has the form 

dX dY -- 
dE, --’ pz=XY-f(X) 

Here 
x = WY- L(c, Y = 

d (up - no) 

d5 

!(X)=F (u,), f(z)=---f-z) (~<a) 

The function l(z) has a change of sign (4) at a-0. The system (1.5) haa 

the point (0,O) a8 the center and lta phase diagram iS the strip -aG<a Is 

(1.5) 

presented In Fig. 3, where KL is a curve whose equation I8 -Y-r’Y(X). 

Consequently, all solutions of (1.4) with values from the Interval (&,A, 

uc+Q) are periodic. For brevity, let us designate the Interval of variation 

of ; for which the phase point passes through some arc of the cycle as the 

“time of paf3sage” of this arc. The time of passage of the entire cycle Is the 

period Z which corresponds to up (E). Over the period Or<fZ’ there is one In- 

terval 0r Increase, the time or passage of that part of the cycle for which 

y>O, and one interval of decrease, the time of passage or that part of the 

Cycle for which Y<O. 
Let ua now assume the contrary statement of the theorem. Let the solution 

~(0 which has Juet one dlsdontlnuity in (a,d) be self-similar stable In (o,d) 

but not coincident In this interval with any eimple periodic eolution. Then, 
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in (e, d) there exists a point of diecontinuity br with the following prop- 

erties: if (t,, c,) and (f,, c*) are Intervals of emoothnees of the functicjn 
u(t), which are adjacent from the left and from the right to the Point q. 

(Fig.4) end which belong wholly to (a, d) and if (uI , u-,) and (ul*, 149 ) are 
the correepondlng intervals of variation of u(f), then either u,-<u~ of ul< 

<up+ (Flg.4) (the notation u,-Y(&~) and uI*y(<,+O) has been Introduced 

here). 

K 

-n 

Fig.3 Fig.4 

We shall examine, for example, the case ua -<us and show that the asaumptlon 

of aelf-similar stability of u(q) leads to the absurd. 

L-et uu. (El be a solution which approximates u(c) to within c outside of 

the 6-neighborhood8 of the discontinuities. Since the Interval of VariatiOn 

of U( 5) for g E (c, d) I.9 not lea8 than (u, , us ) , the Interval 2a of the va- 

riation of ,ul$ 6) for E E (c, d) is then not lee8 than (u, tM6+e, u,*b-e ), 

where M- max 1 u’ (5) 1 In the Interval of smoothness of u(g) 

In order that ILy (5) approximate u(r,) to within E exterior to the In- 

terval (sl-6, 5,-M), It Is necessary, taking Into consideration that tab, 

that the valuea of uy (E), which exceed up- be conoentrated In this Interval, 

1. e. that the time of passage of the phase point along the arc AB ot the CY- 

cle which lies to the right of the vertical line XY~-Y, (Pig.31 must be 

lea8 than 2i3. 

On the other hand, let sr be a point of (q,, c,) at which u({I)Y,-. Then 
to approximate U(C) In the Interval c+et<&-6 It Is necessary that the time 

of passage along the arc A,& which lie8 to the right of the Straight line 

X-ua'y+e be not leea than 5s+.-6. Since the arc A,& Is contained wholly 

within the arc AB, this leada to a contradiction for WffICIently amall 6. 

The theorem la proved. 

a. 1. Let us consider the system of equations which describe the flow of 

water In a sloping channel [3 and 4] 

Ut + uux + gy, = @ (% Y), Yl + [WI, = 0 Gw 
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ly -n 0 (u, y) -= g cane-num - I 1 .1+ 2!i 
sign 2.4 (2.2) 

Here U(JC, t) le the velocity of the fluid particles, p(r, t) la the depth 

of the flow, e le the angle of Inclination of the ahannel, L la It8 width, 

0 is the acceleration due to gravity, A>0 and m, 01 are constanta. 

The system (2.1) can be written In the divergent form 

(2.3) 

If the analogy to the system which deecrlbea the Isotropic flow of a gas 

la drawn, then (2.3) 1s written In Eulerian coordinatea [4] where the depth 

y plays the role of the gae density p. In analogy with gas dynamlca let UB 

now pas8 to Lagranglan coordinate8 cl). In place of the independent variables 

X, t let ue introduce new variables 4, t’ defined a8 

4 = (I 65 t>, t’ = t, dq = - ydx +uydt (2.4) 
The existence of the function 4(x, t) follows from the second equation of 

(2.3) l 

With this subatltutlon 

a 
&UY$ 

a a 
at= z=Yz 

Simultaneously with the substitution of the Independent variables In (2.3) 

let ue further Introduce 

2, = y-l, p (V) = 1!2gv-2 

and In the final writing let us denote t’ end p again by t and x, arriving 

at the following system 

it + [p (v)lr = F (u, v), it - ux = 0 (2.5) 
Here (“1 

F (U, V) = 0 (U, y) = ~-~~m(~+~)“sign~ (u,J,>o; m,n>l) (2.6) 

The system (2.5), which has a divergent form, may be regarded as a system 

of the *law6 of conaervatlon” which govern not only smooth flows, but also 

dlrcontlnuous flows (I. e., flows with "Jumps"), if it Is ehown that the 

COndltlOns on the jumps of the Hugonlot type which are implied in (2.5) co- 
incide with physically realized conditions. 

The conditions of Hugonlot type for (2.5), as 1s well-known [l], are 

P (v+) - p(v_) =o(u+-u_), --+4--J =+J+-4 (2.7) 

_- 
*) A simple referenae to the work ln gas dynamics would be sufflclent to 

transform the system (2.3) to rag.ranglM coordinates; it is reproduced here 

since the term #(u, u) is abeent In the gas dynamic equation. 
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Here UI 1s the Lagranglan velooity of diffusion of a dlacontlnulty. 
On the other hand, the real conditions on both sides of the jump in the 

flow have the form (33 

M (V+ - V-1 = P_ - P+, Y-V- = y+V+ = M (2.8) 

Here Al Is the mass flow across the discontinuity, and V, and V+ are the 

veloolt1ee of the dleoontlnulty relative to the particles on either’alde of 

it, I. e. 

v_ = u - u_, v+=u- u,(U Is the velocity of discontinuity) 

The identity of conditions (2.7) and (2.8) must be shown. 

Taking the meaning of the Lagranglan veloolty IN Into acoount, we can 

affirm that UI-U. Therefore, the flrat conditions of (2.7) and (2.8) are lame- 

dlately coincident, and the second condition of (2.8) takes the foPm 

u - u- = u_o, 27 - u+ = 7l+o 

In addition, as Is also the case ln gas dynamics, we have the energy 
dissipation condition v+>v, for ~0 and v+<v_ for ~0. We further note for 

later use that there follows from (2.7) 

P (v+) -P (v-1 = - (9 
v+-v_ Gw 

Hence, considering the graph of P(v) and taking the geometrical lnter- 

pretation of w’ from (2.9) as a secant lhto aooount, we have the following: 

If that value of ub for which p’ (k, )--d is denoted by vb (IN)) then the value 

of uc always lies strictly between V, and v_, 

2. Let us consider the self-similar solution of (2.5) 

u (E) = u (5 - ot), v (8 = 2, (z - ot) (2.10) 

For such solutions (2.5) acquires the form 

Here 

[P (v) + maI g = F’(v), u=-6w+c (2.11) 

F* W =F(-C0ov +c, v) (2.12) 

Let ua consider the equation; for which u) (we shall Call them admlsslble 
values) the existence of self-similar solutions of (2.5) having even one 

dlscontlnulty (we shall call such solutions simply eelf-slmllar) 18 possible. 

Theorem 2. 1. 16. All values of ~0 are inadmissible. 
20, The set of admissible ~0 coincides wlth‘part of the semi-axis up0 

for which the function 

1 

WI 
- -- 

f(O) = mo-rz & : + p-l 
Is negative. 

(2.13) 

In particular: 

(a) For 2n/m~l admissible u exist and are bounded frohr above u)sa~~ 



(m, n3 t, Qfi,). 
(b) Par Zn/nGtl the existence or nonexistence of admlsslble LU depends on 

the relations among the parametera, but in any caBe they are bounded from a- 

bove Just a@ in (a). 

9. For wide channels (k~) the function J(W) take8 the form 

(2.14) 

(a) For 2n,kl the set of admissible u) aatlefiee the inequality 

(2.15) 

(a = I-2nlm) 

(b) For 2t,kl the admisalb~e values of I# satisfy the inequality LP@#, 

where a la the same a8 in (a). 

(c) For 2~~/fn-l (the Ch ezy cane (Reference 3)) 811 value8 of ut are admia- 

stble if 

and values of w with opposite sign In the lnequallty are not at all admissible. 

Proof. The question of the existence of self-similar aolutfons with 
specified values of UI which have even one discontinuity reduces to the fol- 
lowing. 

For an arbitrarily specified ut, let us find uo(lu) such that P'(u~)%u~.-C. 
Such a uo(ittj~O can always be found and It Is unique, xlgmely v, (#) =z g-"S&. 

If now C-CO can be determined so that the properties oZ .F*fv), defined 
by (2.12), guarantee the existence of integral curve8 v=u(T) of equation (2, 
llf which monotonoualy increase for UKO (Fig.5) and monotonically decrease 
for w>O(Fig.of in a hori'zontal strip of the-(co)-plane, which include8 the 
straight line v=va(u,~'inslde of it. then a self-similar solution with 
prescribed w exle;t; (*).In the converse case a self-similar solution does not 
exist. 

ws.5 Fig.6 

In fact, as haa been shown above, uO(w) always lies between v, and v, 80 
that the range of values of the self-similar solution6 v(q) must include U,(W). 

Further, for UICO the dissipation condition haa the form v+cu_ and a trend 
of the curves similar to that shown in Fig.5 is necessary (and eufflcient) to 
be &ble to construct self-similar solutions with discontinui'ties. 

~- 

*) In addltlon, a nondenumerable set of self-similar solutions also exists. 
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Fnr -0 the dfssipatfon condition is reversed and an analugour 8tatement 
holds for Fig.6. 

The behavior of the integral ourveo in the neighborhood of the 8 night 
line u-u0 in, however, determined by the behrvior of the fWIotion F* U) 
u-uo(w). Namely, slnae p’(u)w’ rlnayu has the oh 

t at 

Y 
* of rign I- +I at uo, 

then for the trend of the curves depioted In Fig.5 t ie nacersary and ruffi- 
cient that P(v) have a change of sign (- +) at the point a0 and for the 
trend of the curves in Fig.6 it is necessary and sufficient for P”(b) to 
have a change In sign I+ - ) at the point cc, 

Thus, let ut be specified, For it VO (0) =. g-% o-*1* o~!‘I be found, w8 shall 
show that a c=cc(ul) can always be found, and moreover It Is unique, auah that 
F*(v)-~(-uWCc, u) vanlahee at u-?P~ a Finding such a C reduces to solving the 
Lquat Ion 

(2.27) 
for c. 

From a graph of the left-hand aide as a function of C it It ie eaelly 
perceived that such a i?4& (w) can be found and is, moreoverl unique, 

Let us denote the function F(-uru*Cs ,v) by F,*($). It has the real root 
Q(W) (and there can 8tilX be others). 

Let ~0. The graph of the function 

F,*(v)=a-~(-cOov+Co)m (v++jnsign(-ov+Cc) (2.18) 

la given in Fig.7. From it there is seen that F,* (v) hae a unique root which, 
consequently, 1s also uo, But a change of sign (+ -)occurs at this root which 
excludes the existence of a self-similar solution, Thust part lQ of the the- 
orem has been proved. 

m3.7 Fig.8 

Let WO. The graph of the function F, * (v) for up0 is given in Fig.81 at 
least one positive root, namely uc, always elltsts. 

The question consists of whether the necessary chatlge of sign (+ -_)oc- 
curs at U,j or, In other words, whl,ch,$eIthe two roots of the function 

is US (If both of them are ooalti&~ c%erwise the auestion 1s resolved). 
The &&tion Is reaolved by-investigating the sign df the 

Taki 
T 

lnto consideration the expreaafona for #‘(I,+, and the lden- 
tity (2.17 and also the fact that all of the roots of 
can be seen from ~1g.8 occur with vWc/u), I. e. with - 

for ~0, a8 

can take sign (- ou+C,j =I for the differentiation, and have 

F,*’ (v(J) = ii (- covg + C,) q%+qyfb, (2.19) 

The change of sign (+ -) necetrsary for the exiatenoe of self-similar 
solutions is guaranteed by the negativeness 4t Ffa*’ (v& 1. e. by the neg- 
ativeness of I. We note that the case ofPU*‘(vo) GOie lnadmlsalble alnce 
In this Case there la no ahange of sign of F 
This, by the way, shows that ~-0 Is 

* v at the point vo (Fig.8). 
inadmiss& e. I’ 

To prove all of the points of parts ‘L? and 3’ only an elementary inves- 



tigation of’ the funatlon I(W) on the semi-axle UJZO remake to be carried out. 
In the Case (a) of Point 2” it Is easily seen that the second term in /(uJ) 

ie dominant for small u 60 that ~(u.)<O and the flrat term is dominant for 
lar e u) EO that t(w)-+- as U-+-. 

b is is valid for the aase (a) of point P, but here it le further guar- 
anteed that f(u) haa only one root and that it la easy t.o write an expression 
for it in term8 of the parametera. 

fn the OIlC (b) of point 1” the function I(Lu) le positive for both small 
and large u) but, depending on the parametera, it can be negative for certain 
u). 

In the oaae (b) of point 2” the function I 16 positive for small w and 
negative for large cj moreover, a unique change of sign takes place at ulo 
whloh is lndloated In the formulation of the theorem. 

B~EuUIY, In the case (c) of point p we have 

(2.20) 

Henoe, this point Is clearly confirmed. With this the proof of the theorem 
Is completed. 

Note 2.1. The admlsslblllty of certain u1>0 means that the curve 
of F,’ (v) in Fig.8 has two positive roots 
Let ther be another root u (w), At v-v1 the function F * (v) ha8 the change 

, of which ue (w) Is the smallest. 

of sign (- +); therefore, \ he integral curves have theeform shown in Flg.9. 
N o t e 2. 2. If the quantity u1 (w) la taken as 0, In the Hugonlot 

condition (2.9), then 

V Illin to) = IYmax (0)1’1 
~111 Play the role corresponding to v, where Y,,,(O) is the maximum height 
of the wave 

i 
ossible for the given UI. 

From Fig. it is leen that u1 (~u)cw’~C~ (u). Taking Into consideration that 
in the conditions (2.9) an increase of u, 
leads to a decrease of v, and denoting by 
T(O) the quantity obtained from (2.9) as 
V we have ~,~,(o)>cp (co) if wcl CO (Pw) is 
&en for u 

In the c&e (a) of polnts 20 and 3” ad- 
mlsslble u) are bounded from above by a 
quantity u)c (m, n, 1, a/X) . 

which Is associated with the maximum height 
of a wave generally possible for the given 

Fig.9 parameters m, n, t, a/x, we have the es- 
timate 

nlin rp (0) \( inf Vrbi*(ti) 
cGJX&, O<W<% 

The quantity standing here on the left can be easily written out expllcltly 
a6 a hurOtlOn of the parameters m, n, 
(2.17) for Co, 

1 a/A with the help of ‘the equality 
the expression v,, (a) = g’r/a ~-‘/a and the Hugonlot conditions (2. 

9). 
In bhe ease (b) of point 2’ and , (b) and (c) of point 3’, where the ad- 

missible w can be arbitrarily large, we have 

u mill (O) < ‘0 (O) * ’ for ti++m 

00 that theoretically waves of arbitrarily large height are poselble (Clearly, 
for sufficiently large wave heights, the hydraulic equations (2.5) themselves 
become lnappllaable. 

N o t e 2. 3. From theorem (2.1) It Is seen that the magnitude of the 
ratio n/n hae an eesentlal qualitative Influence on the properties of the 
self-slmllar solutions, of which the very cosnnonly used Chezy formula Is an 
exeeptlonal boundary ease, Taking Into consideration the emPirica character 
of the quantities m and n, a.questlon about the posslblllty of determining 
m/n to some degree from a qualitative examination of the behavlor of a self- 
similar solution arises. 
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3. Analogouely to the oa8e of a elngle equation, the eystem (2.5) can be 
considered with a dissipation term 

u+ f rp (41, = puxr + F k, 4, 7+ - u* = 0 (3.1) 

and aelf-similar solution8 of thle syetem Up (Z-U& zJlx (z-@t)can be exam- 
ined. In addition, the concept of the self-similar stability of the solutlone 
can be Introduced. 

For nt fDz UP (5) the ayatem (3.1) $cqulres the form 

[p? (ZJ) i_ o”] $- = F* (v) - rq.a d$l , tc (E) =- OzJ (4) + c (3.2) 

The dynamic system correeponding to the first equation of (3.1) It! 

dX - “.- 
(g - y, 

op~‘f(s)--lp(s)Y 
Graph8 of the functions I(X) and v(X) 8re presented in Fig.fO. 
The functions f(X) and cp(x) in equation (3.3) me functions of a par- 

Meter W, where w has been choeen to be admiseible in the aenae of Theorem 
(2.1). The direction field for the ayetern (3.3) le shown In Ffg.11. 

Fig.10 Pig.11 

The point (0, 0) ie the focus of center. The lnvestlgatlon of the phase 
dlkgram OF (3.3) is a very interesting problem. If it turned out that the 
point (0, 0) Is enclosed by a limit cycle, whose left-hand point does not ap- 
proach lnflnlteesimally close to the straight line R; - Ug for all poselble 

admissible W, then this proclaim the existence of a maximum height of wavea 
developed from 8n undisturbed flow even In the case for which the admlaelble 
Q can be arbitrarily larqe (cf. Note 22). 

Let us approximate the functions I(X) and cp(X) in equation (3*3) by the 
linear functions Z(X)=rl( ) 

Then, in place of 
and cp(f)rk;r in a small Interval I- h, h]. 

3*3), we ahall have the approximation 

for the atrip - of the phase plane. 

soning 
will be the center for the system (3.4). The fame rea- 

a8 employed in Theorem 1.2 leads to the conclusion that only simple 
periodic aolutlona really exist (I. e, that there la self-similar stability). 

In view of the fact that (3.4) approximates (3.3) only for amall h, this 
conclusion, however, should for the present be considered valid only for waves 
of not large amplitude, 

Its validity for waves of arbitrary amplitude is not excluded but is 
liable to further clarification. 
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